
Chapter 4

From sensitivity to
optimization

4.1 Estimating a solution through regularization
In the previous chapters we have discussed in detail the discretization of the forward
problem and the sensitivities with respect to parameters. In this chapter we discuss
how, given data, we can pose a problem for an unknown parameter in the PDE.

Assume that the (discrete) forward problem, the discretized PDE, is written
as

c(m, u) = 0 or u = u(m)

and that the data is given by a linear operation on the solution

d = Qu(m).

Let d
obs be some observed data. Our goal is to find a “reasonable” parameter

m such that u(m) fits the data. One may think that it is possible to obtain such a
model by solving the optimization problem

misfit(m) = min
m

1
2
�Qu(m)− d

obs
�
2
.

However, this problem often does not have a unique solution and even if it has a
unique solution it is typically unstable.

To see why this is the case consider for a moment the DC resistivity problem
of evaluating m given u in 1D and assume data everywhere, d = u + �. In this case
we have that

(mu
�)� = q

and assuming that we have u everywhere we can attempt to obtain m by the
following steps.

• Evaluate u
� from the data, say, set u

� = d
�

• set m(x) = d
�(x)−1

� x
0 q(t)dt
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Evaluating the integral should be straight forward however, the estimation of m

requires the estimation of the derivative of u. Consider the data

d = u + � sin(nπx)

that is d is polluted with a small, high frequency component. In this case we have
that

d
� = u

� + �n sin(nπx)

and for sufficiently large n the derivative of d is swamped by the noise, even though
the data itself may have very little noise. For realistic applications the situation is
worst since the data is finite and may not have sufficient support. It is therefore
unadvised to attempt and solve the problem directly and some stable process is
preferred.

We thus acknowledge the fact that there are infinitely many solutions, many
solutions that give a reasonable fit to the data. The question that we ask is, which
solution, out of the infinitely many we want to recover. Our strategy is to use opti-
mization. The solution we want to recover minimizes a functional R(m−mref) where
R(·) is a function from Rn → R which we call the regularizer. For all regularizers
we have that R(0) minimizes R(t). Since we have optimization in mind, a convex
function is more useful than a non-convex one although non-convex functions have
been used with some success in the past. The choice of R(·) is crucial! Different
choices lead to very different solutions. Thousands of papers and many books have
been written on justifying a particular choice. Obviously, for a meaningful solu-
tion of the problem we need to have R(m −mref) small for the “true” solution. If
R(mtrue−mref) is not small then the resulting computed solution is likely to be far
from the “true” solution. In the following sections we discuss different regularization
techniques and their validity and computability.

To obtain and optimization problem for the model we need to consider the
noise model. Our model is rather simple as we assume that the observed data is
given by

Qu(m) + � = d
obs

with � is a vector in Rk of an iid normally distributed noise with 0 mean and σ
2

standard deviation. Consider now quantity �
�

�. Since each �i is random the scalar
variable ϕd is also random. In fact, this variable has a χ

2 distribution. One can
verify that

E (���) = σ
2
k (4.1a)

Var (���) = σ
2
√

k (4.1b)

It is therefore reasonable to pose the following optimization problem in order
to obtain a “reasonable” model that fits the data

min R(m−mref) (4.2a)

s.t
1
k
�Qu(m)− d

obs
�
2
≤ σ

2 (4.2b)
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Obviously, the number σ
2 is not “set in stone”. Especially when the number of

data is not very large. Note that the standard deviation of the χ
2 function implies

that this number has a variance of σ
2
k
− 1

2 . On the other hand, for very large scale
problems where the number data is in the thousands this estimate of the noise is
very accurate.

We now recall a general methodology for the solution of constrained optimiza-
tion problems. The Lagrangian of this problem is

R(m−mref) + β

�
1
k
�Qu(m)− d

obs
�
2
− σ

2

�
(4.3)

where β is a Lagrange multiplier. The conditions for a minimum are

R
�(m−mref) +

2β

k
J(m)�(Qu(m)− d

obs) (4.4a)

β

�
1
k
�Qu(m)− d

obs
�
2
− σ

2

�
= 0 (4.4b)

β ≥ 0
1
k
�Qu(m)− d

obs
�
2
≤ σ

2 (4.4c)

where J(m) = −Q∇uc
−1∇mc is the sensitivity matrix.

If our reference model does not fit the data, then the solution is obtained when
1
k�Qu(m)− d

obs�2 = σ
2
. Define

α =
k

2β

and we see that the solution is equivalent to the unconstrained optimization problem

min αR(m−mref) +
1
2
�Qu(m)− d

obs
�
2 (4.5)

for the appropriate choice of α. The problem Eq. (4.5) is often referred to as
Tikhonov regularization. There are thousands of papers and many books that
discuss this form of regularization.

4.2 Quadratic regularization
Maybe the most simple regularization is quadratic. Setting

R(m) =
1
2
�Lm�

2

Where L is some operator.
An important point need to be made here. Although it is simple to choose any

discrete operator care must be taken such that the problem is scaled in the right
way. Consider for example the case that L is the identity. The continuous analog
of R is

R(m) =
1
2

�

Ω
m(x)2 dx
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Again, using the midpoint method and assuming a regular grid of spacing h we
obtain

R(m) = h
dim

m
�

m

where dim is the dimension of the problem. If we do not use the appropriate scaling
then the solution of the problem on different grids is different, because this implies
that different problems are solved on different grids.

Regularization operators that have been successfully used for many problems
include L = ∇h, L = ∆h (where h implies discretization of the differential oper-
ators) and variations and combination of thereof. These operators imply that the
solution is expected to be smooth, with no discontinuities. For smooth problems
such regularization is hard to beat.

Consider the special case where

c(m, u) = Au−Gm = 0

then
d
obs = QA

−1
Gm = Jm

In this case it is easy to obtain a closed form solution to the problem. Substituting
the regularization into the optimization problem Eq. (4.5) we obtain

min
α

2
�Lm�

2 +
1
2
�Jm− d

obs
�
2

and its solution is
�m = (J�J + αL

�
L)−1

J
�

d
obs

.

Also, it is easy to see that the problem is equivalent to the least-squares problem
�

J
√

αL

�
m =

�
d
obs

0

�
. (4.6)

The advantage of this observation is that it is possible to use least-squares
solvers for the solution of the problem without ever forming J

�
J or even having J

explicitly. Methods such as Conjugate Gradient (CG), Conjugate Gradient Least
Squares (CGLS) and Least-Squares QR (LSQR) are very effective methods for the
solution of such problems. These methods are iterative and require only matrix
vector products of the form Jv and J

�
w.

function x = cgls(A,b,k)

x = zeros(n,1);
d = A’*b; r = b;
normr2 = d’*d;

for j=1:k

Ad = A*d; alpha = normr2/(Ad’*Ad);
x = x + alpha*d;
r = r - alpha*Ad;
s = A’*r;
normr2_new = s’*s;
beta = normr2_new/normr2;
normr2 = normr2_new;
d = s + beta*d;

end
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It is known that the convergence of conjugate gradient depends on the con-
dition number of the system. Consider first the case that L is the identity. The
matrix to be inverted is J

�
J +αI. Since J is a discretization of an integral operator

it is typically compact and its singular values are bounded from above, independent
on the mesh size. Therefore, the eigenvalues of J

�
J + αI are bounded from above

and below independent on the mesh size and the number of CG iteration is fixed.
Next, consider the case that L is a differential operator and that L

�
L is invertible.

In this case the eigenvalues of L
�

L cluster at infinity and the condition number
of the matrix is mesh dependent. This can be easily avoided by preconditioning.
Consider the preconditioned system (L�L)−1(J�J + αL

�
L). It is easy to verify

that the condition number of this system is also bounded independent of the mesh
and therefore, the number of CG iteration is mesh independent.

Although the number of CG steps can be made mesh independent it is strongly
depends on α. In fact, we should not confuse the words mesh-independent with
small. To have a small number of iterations one must have an appropriate precon-
ditioner. Preconditioning for ill-posed problems is an open field of research.

4.2.1 Programmer note Jv and J�w

For the problems discussed above, computing J is not recommended and should be
avoided in practice. This implies that one needs a code to compute products of the
form Jv and J

�
w. Never assume that two codes, one that compute Jv and one

that computes J
�

w are indeed adjoints of each other. A simple test is as follows.
Choose random vectors v, w and compute (by using your code)

w
�(Jv) and v

�(J�w).

These expressions should be equal (up to roundoff errors). If they are not you likely
have a bug in your code.

4.3 �1 Regularization
A different regularization from the one we have seen above uses the 1-norm rather
than the 2-norm. It is rather well known that the one norm yields solution with
many zeros and only very few nonzeros. This observation was used extensively by
geophysicists in the 70’s and 80’s [5, 17, 20] to obtain so-called spiky solutions to
inverse problem. Recently some proofs about the amount of sparsity under some
strict conditions have been proved [4] and this has generated a “hot” trend within
the inverse problem community, trying to solve almost all inverse problems with
sparse-like solution. We now review some of the techniques for sparse recovery and
discuss some of the applications its advantages and limits.

Consider first the case of imaging a star cluster. Obviously, stars are “spikes”
and therefore this is a simple case of “sparse solution”. Sparse solutions implies
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that most of the entries in m are zero and as explained above we minimize

min
m

1
2
�Jm− d�

2 + α�m�1 (4.7)

If the model we require is not sparse we assume that we can express it using
a basis function

m = Wz

where W is some basis and z are coefficients. The assumption is that the model
can be expressed using only a few of the basis vectors in W and therefore we can
minimize

min
z

1
2
�JWz − d�

2 + α�z�1 (4.8)

The choice of W is crucial. It is easy to see that it is possible to choose W that
yield sparse solutions without any advantage compared with the 2-norm solutions
introduced in the previous section. For example, if we choose W = V where V are
the right hand singular vector matrix of J then, it is easy to verify that we simply
obtain the truncated SVD solution. Choosing W judicially is problem dependent
and for many inverse problems the appropriate W is hard to find.

The difficulty with this regularization is that it is not linear and even worst, it
is not differentiable. The question is, how to effectively solve such problems. Here
we discuss two main approaches.

First, it is possible to use Iterative Reweighted Least Squares (IRLS). IRLS
has been used in the past for many problems with much success. IRLS is a simple
strategy that linearly converges for the solution of the problem. Rather than solving
the original non-differentiable problem we “regularize” the regularizer. Defining

�m�1,� =
�

i

�
m

2
i + �

we replace the one norm with a differentiable function, minimizing

min
m

1
2
�Jm− d�

2 + α�m�1,� (4.9)

Then, replace the problem with a sequence of quadratic problems of the form

min
mk

1
2
�Jmk − d�

2 +
α

2
m
�
k diag



 1�
m

2
k−1 + �



 mk (4.10)

Hence the name, iterative reweighted least squares. The advantage of this approach
is that one can use tools developed for the quadratic problem.

There are two disadvantage to IRLS. First each iteration can be rather expen-
sive, solving a linear systems of equations to high accuracy when this may not be
needed. Second, the choice of � may not be easy and pose more difficulty.
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A second approach for the solution of the �1 problem is to replaced the non-
smooth problem by a smooth optimization problem with inequality constraints.

Setting m = p− q with both p, q ≥ 0, we show that the optimization problem
Eq. (4.7) i s equivalent to the following optimization problem

min
p,q

1
2
�J(p− q)− b�

2 + αe
�(p + q) (4.11)

s.t p, q ≥ 0,

where e = [1, . . . , 1]�. A very effective method, that does not require matrix in-
version is the gradient projection method. We will discuss this method in the next
section.

4.4 Total variation and Huber
One celebrated method of regularization is the total variation. The idea here is to
obtain a piecewise constant solution. Let us consider this regularization in 1D first.
In continuous setting, the regularization operator can be written as

TV (m) =
�

Ω

����
dm

dx

���� dx

To see the effect of this regularizer, assume that m(x) is a piecewise constant
function on [0, 1] with value a for x <

1
2 and b otherwise. Then, it is easy to verify

that
TV (m) = b− a

thus, TV regularization penalizes the jump but allows it. To see why TV may
prefer a jumpy or non-smooth solution, consider the following interpolation and
extrapolation problem. Assume that m(0.25) = 0.25 and m(0.75) = 0.75. Assume
we would like to recover m everywhere in [0, 1]. Consider first a linear interpolation
and extrapolation. Obviously, a linear function is a very smooth function. The
interpolation leads to m1(x) = x which obviously fits the data. It is easy to see
that TV (m1(x)) = 1. Now consider the function

m2 =
�

0.25 x < xM

0.75 otherwise

where xM is any point in the interval [0.25, 0.75]. It is easy to calculate that
TV (m2(x)) = 0.5. Thus, TV regularization generally prefer non-smooth solutions
over the smooth ones.

4.4.1 Discretization in 1D

Discretization in 1D is straight forward. Assume that m ∈ [0, 1] then, we divide
the interval into cells by the nodes {x1, . . . , xn}. The mid of each cell is numbered
as {x 3

2
, . . . , xn− 1

2
}. Assume that m is discretized in nodes then, define the discrete

approximation

TVh(m) = h

� |mj+1 −mj |

h
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which is a second order approximation to the continuous TV function.
As usual, it is beneficial to think about this regularization in matrix form. If

we let D be an (n− 1)× n difference matrix

D =





−1 1
−1 1

. . . . . .
−1 1





then, we can write
TVh(m) = e

�
|Dm|

Again, to work with the non-differentiability it is possible to smooth the origin.
One way to achieve this is to use the Huber function

ρ(t, θ) =
�

t2

2θ |t| ≤ θ

|t| otherwise

Using this approximation we obtain

TV
θ
h (m) = e

�
ρ(Dm).

It is easy to verify that

∇TV
θ
h (m) = D

�diag
�

ρ
�(Dm)
Dm

�
Dm.

Using the derivative we can now suggest a method for the solution of the
optimization problem

min
m

1
2
�Jm− d�

2 + αTV (m).

The gradient is

J
�(Jm− d) + αD

�diag
�

ρ
�(Dm)
Dm

�
Dm.

The lagged diffusivity method uses the following fixed point iteration for the
solution of the problem

J
�(Jmk − d) + αD

�diag
�

ρ
�(Dmk−1)
Dmk−1

�
Dmk = 0

Although the iteration converge slowly, it tends to have satisfactory results
(at least in the eyeball norm) within a few iterations.

4.4.2 Discretization in 2D

The discretization in 2D is slightly more complicated. Consider the 2D grid and
consider the cell who’s corners are [i, j], [i + 1, j], [i, j + 1], [i + 1, j + 1]. We can
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approximate the derivatives on the edges

(mx)i+ 1
2 ,j =

1
h

(mi+1,j −mi,j) + O(h2)

(mx)i+ 1
2 ,j+1 =

1
h

(mi+1,j+1 −mi,j+1) + O(h2)

(my)i,j+ 1
2

=
1
h

(mi,j+1 −mi,j) + O(h2)

(my)i+1,j+ 1
2

=
1
h

(mi+1,j+1 −mi+1,j) + O(h2)

Now, to obtain a second order approximation for the TV function we average
the squares (rather than square the average), and summing over all cells multiplied
with their associated volumes, obtaining

TVh(m) =
√

2h

�
((mi+1,j −mi,j)2 + (mi+1,j+1 −mi,j+1)2

+(mi,j+1 −mi,j)2 + (mi+1,j+1 −mi+1,j)2)
1
2

Again, we would like to obtain a matrix form for this function. Let D be the 1D
difference matrix defined in the previous chapters. Then, the x derivative can be
written as

Dx = I ⊗D

and the y derivative can be written as

Dy = D ⊗ I

where ⊗ is a kronecker product and I is an identity matrix. Then, we can write

TVh(m) = he
�(Ay(Dxm)2 + Ax(Dym)2)

1
2

where Ax,y are averages matrices that average from the edges of the cells to the cell
centers. It is easy to see that Ax,y can be also obtained by using kroneker products.

Once again, to avoid the problem of non-differentiability, it is possible to
replace the non-differentiable TV function by a corresponding smoothed approxi-
mation.

4.5 A comparative study
In this section we examine different regularization techniques and see their effect on
a simple model problem. Rather than using a forward problem taken from PDE’s
we take a forward problem that has similar structure given by the equation

d(x) =
�

Ω
K(x, ξ)m(ξ) dξ

This is an integral equation of the first kind with a kernel K(�x, �ξ).
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Figure 4.1. The Kernel function for our experiment .

Figure 4.2. The models and data associated with them .
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Figure 4.3. Reconstructions given different regularizers .

For our experiment we generate the kernel by the using the package restore
tools written by James Nagy. The Kernel is plotted in Figure 4.1. Using the Kernel
we blur two images. An MRI image and a satellite image. The images and the
blurred data are presented in Figure 4.2 This blur is a relatively strong one and it is
similar to action of many sensitivity calculations. We now use different algorithms
for the recovery of these objects. Below, in Figure 4.3 we present the results of a
hybrid regularization which is an approximation to the L2 regularizer, the L1 results
as obtained by the package GPSR (by Steve Wright). For both problems we chose
the regularization parameter such that the data fit by the discrepancy principle is
obtained.

It is important to note that at least for the problems here, the results are
very different however, it is not easy to say that one form of regularization seriously
outperform another. In my experience this is the case for many ill-posed problems
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and although some publications suggest that using simple, quadratic regularization
is unadvised, I would beg the differ.


