
Chapter 5

Optimization Techniques

5.1 Unconstrained optimization formulation
Maybe the most common approach to parameter estimation problem is the uncon-
strained optimization approach. Its advantage and disadvantage is in the separation
of the solution of the forward and the inverse problem.

Given the constraint (PDE) c(m, u) = 0 and a candidate model m, we can
“solve” for u = u(m) and then solve the unconstrained optimization problem

min
m

J (m) =
1
2
�Qu(m)− d�

2 + αR(m)

A necessary condition for a minimum is

∇mJ (m) = J(m)�(Qu(m)− d) + α∇R(m) = 0 (5.1)

that is a nonlinear system of equations for m. We now discuss different solution
methodologies for the solution of the problem and discuss their properties.

5.2 Methods that use gradient information only
To solve the nonlinear system Eq. (5.1) we consider first methods that use gradient
information only. Maybe the simplest is the steepest descent method, where each
iteration can be summarized by the simple following lines

55

56 Chapter 5. Optimization Techniques

function[x] = ucSDOPT(x0,para,maxit)
% [x] = ucSDOPT(x,para)

gamma = 1e-5;
x = x0;
iter = 1;

while 1

[f,df] = feval(para.obj,x,para);
s = -para.H\df;
if iter == 1, muls = 1; f0 = f; n0 = norm(df);end

fprintf(’%3d.0 %3.2e %3.2e\n’,iter,f/f0,norm(df)/n0);

lsiter = 1;
% Armijo line search
while 1

xt = x + muls*s;
ft = feval(para.obj,xt,para);
fprintf(’%3d.%d %3.2e\n’,iter,lsiter,ft/f0);

if ft < f + muls*gamma*s’*df, break; end

muls = muls/2;
lsiter = lsiter+1;
if lsiter > 6, disp(’Line Serach Break’); return; end

end
x = xt;
if lsiter == 1, muls = muls*1.5; end
iter = iter+1;
if iter > maxit, return; end

end

For inverse problems steepest descent is known to slowly converge due to the
ill-conditioning. Much better results can be obtained by using the regularizer and
change the direction sk to

sk = −(∇2
mR(mk))−1

∇J (mk).

For quadratic regularization this implies simply solving at each iteration the PDE

(∇2
mR(mk)) sk = ∇J (mk)

which can be done by using a multigrid method.

A better alternative than steepest descent is to use limited memory BFGS
[15]. In LBFGS we save a number of the previous steps {sk, sk−1, . . . , sk−�} and
previous gradients {∇J (mk),∇J (mk−1), . . . ,∇J (mk−�)} in order to approximate
the inverse of the Hessian. The method has a slightly large storage requirement
compared with steepest descent but it typically yields much better convergence.

An important implementation note in LBFGS is that one needs to choose an
initial Hessian. For inverse problem it is crucial to choose

H0 = ∇2
mR(m0)

for the method to work well. Other quasi-Newton methods can be selected [?] for
problems that have special structure.

From an implementation point of view, using simple descent methods requires
the solution of the forward problem (to evaluate J (m)) and the solution of the

5.3. Gauss-Newton and Newton like methods 57

adjoint problem (to evaluate ∇mJ (m)). In some cases, where these methods tend
to work well, they are unbeatable. However, in many cases, using higher order
information can lead to better and faster algorithms.

5.3 Gauss-Newton and Newton like methods
Methods that use second order information can also be used for PDE optimization
problems. In these methods one generates an approximation to the Hessian and
(approximately) solves the linear system

∇
2
mJ (m) s = −∇mJ (m)

Let us first compute the Hessian of the problem. Differentiating Eq. (5.1) with
respect to m we obtain

∇
2
mJ (m) = J(m)�J(m) +∇m(J(m)�r) + α∇

2
mR(m).

where r = Qu − d is taken as a constant vector that do not depend on m. The
Hessian contains three different parts. Clearly, the term

HGN (m) = J(m)�J(m) + α∇
2
mR(m)

is symmetric positive semidefinite (and likely SPD). The extra term ∇m(J(m)�r)
is symmetric (why?) but may not be positive. It is therefore common to ignore this
term in practice.

It is important to note that although the second term tends to be ignored,
it is actually possible to use it with relative easy without adding much cost to the
problem. This is in contrast to many other least squares problems where the second
order terms are ignored because of the cost associated with computing them. We
will discuss the computation of the term in the next chapter.

Clearly, using direct methods for the solution of the Gauss-Newton system
is out of the question and therefore iterative methods are used. Since the Gauss-
Newton system in PSD it is common to use conjugate gradient (CG), conjugate
gradient least squares (CGLS) or least square QR (LSQR) for the solution of the
problem. If the number of CG iterations is large then it can be rather expensive
to solve the problem. It is therefore common to use a fix, large tolerance when
approximately solving the linear system. It is rare to set the constant below say
10−2 and in most cases, rather ill-advised. Newton like methods with inexact solve of
the linear system are often refer to as inexact Newton and Gauss-Newton methods.
The convergence of this methods is linear but the constant of the linear convergence
is typically much better than the constant of the steepest descent method.

5.4 More on solving the linear systems
As discussed above for any Newton like iteration one requires the solution of the
system

(J(m)�J(m) + α∇
2
mR(m)) s = −∇mJ (m).

58 Chapter 5. Optimization Techniques

That is done by, say, the CG method. Clearly, the main cost is the computation of
the matrix J(m) and a vector and the computation of J(m)� and a vector. Since in
general, J(m) = −c

−1
u cm the computation of a matrix vector problem is equivalent

to the solution of a (linearized) forward problem. It is therefore natural the measure
the “cost” of the solution of the linear system by considering how many J(m) and
J(m)� mat-vecs are computed. If the forward problem is linear with respect to u

then the cost is equivalent to the cost of the forward problem.
To reduce the cost associated with the linear system preconditioning is needed.

To recall, a preconditioner is a symmetric positive definite matrix M that is used
in order to solve an equivalent problem

M
−1

HGNs = M
−1
∇mJ

where the condition number of the preconditioned system M
−1

HGN is much smaller
than the condition number of HGN leading to faster convergence of the conjugate
gradient method. The problem of preconditioning the Gauss-Newton system in an
effective way is an open research problem. The difficulty in finding an appropriate
preconditioner stems from the point that J(m) can be thought of as a (discretization
of) an integral operator that is, it is a compact operator with singular values that
cluster at 0. To add to this difficulty, the operator ∇2

mR can be thought of as
a differential operator with eigenvalues that cluster at infinity. Dealing with this
combination has proved to be a tough problem.

We now briefly discuss a number of techniques that have been used with some
success to precondition the system.

• Maybe the most obvious preconditioner that is used is to simply use the reg-
ularization term as a preconditioner, that is, setting M = ∇2

mR(m). Since
∇2

mR(m) is sparse and can be considered as a discretization of a PDE, multi-
grid methods can be often used for the solution of the preconditioner system.

• A more complex preconditioner (at least in terms of implementation) can
be obtained by combining quasi-Newton methods with the Gauss-Newton
method. Recall that in the L-BFGS method we build an approximation to
the inverse of the Hessian using previous steps {sk, sk−1, . . . , sk−�} and pre-
vious gradients {∇J (mk),∇J (mk−1), . . . ,∇J (mk−�)}. The inverse of the
preconditioner, M

−1 is supposed to approximate exactly that same quantity.
It is therefore possible to use the Gauss Newton steps in combination with the
previous gradients and build the L-BFGS approximation to the inverse of the
Hessian. However, rather than using this inverse in order to obtain a step,
we use this inverse to precondition the linear system. In my experience this
simple preconditioner can be highly effective in many cases.

• Other preconditioners that are problem dependent can be developed. For
example, if it is possible to approximate c

−1
u with a sparse approximation

then the matrix c
−1
u cm can be sparse and sparse linear algebra techniques can

be used for the solution of the preconditioned system

5.5. Discussion - optimization method selection 59

It is important to remember that since each product of J(m) and a vector
requires an equivalent to the solution of the forward problem (often with multiple
right hand sides) using a rather less conventional and more expensive precondition-
ers may have significant cost effectiveness.

Another important aspect of the solution of the system is our ability to factor-
ize the matrix cu. If this is possible then the computation of the forward, gradient
and the computation in each CG iteration are dramatically reduced. For many right
hand sides or for time dependent problems with implicit methods decomposing cu is
highly recommended. In many cases this requires specialize software that allows for
the effective decomposition of large systems and a reasonable computational plat-
form that can perform parallel decomposition. Examples for such decompositions
are MUMPS [?], PARADISO [?] and superLU [?].

5.5 Discussion - optimization method selection
Although it is often desirable to work with methods that tend to converge faster
than steepest descent of LBFGS, it is important to realize some of the advantages
of these methods, especially in the context of parameter estimation in PDE’s. Al-
though most books tend to emphasize the advantage of not solving linear system
(and therefore defaulting to LBFGS for large scale problems) this is not the real
advantage in our case. As discussed, solving linear systems is typically done us-
ing conjugate gradient, that is, all we need is the evaluation of Jv and J

�
w at

each iteration and therefore, each CG iteration is equivalent to one steepest descent
step. If the number of CG iterations is small, and the reduction in the function
in a Gauss-Newton step is much better than an equivalent number of steepest de-
scent (or LBFGS) steps then Gauss-Newton method and its equivalent would be
preferable.

The main difficulty in applying the Gauss-Newton method is especially evident
for problems with multiple right hand sides, where for any single model m we have
many fields u1, . . . , uns. In this case, it is possible to compute (and we will show in
a later chapter) that the computation of the function and gradient require that we
solve (and hold in memory) only a single field. While for Newton like methods we
require to hold the full set of fields. For problems with many sources memory can
be a serious issue and can prohibit the use of second order methods.

5.6 Box constraints
For many problems box constraints on the solution exists, that is, we wish to solve

min
m

J (m) =
1
2
�Qu(m)− d�

2 + αR(m) (5.2a)

s.t mlow ≤ m ≤ mhigh (5.2b)

60 Chapter 5. Optimization Techniques

It is straight forward to verify that the conditions for a minimum are

mi = [mlow]i (J (m))i ≥ 0
[mlow]i < mi < [mhigh]i (J (m))i = 0

mi = [mhigh]i (J (m))i ≥ 0
(5.3)

which can be written in compact notation

(m−mlow)⊙ (m−mhigh)⊙ J (m) = 0 mlow ≤ m ≤ mhigh 0 ≤ J (m)

One way to obtain this point is to use the projected gradient method. The
projected gradient method use the steepest descent method and projects every step
to be feasible. First, we define the projection P to the feasible set

P(t) =

t if mlow ≤ t ≤ mhigh

mlow if mlow > t

mhigh otherwise

The projected steepest descent algorithm is a simple variation of the steepest
descent algorithm that reads

• Compute J (mk) and ∇J (mk)

• Set sk = −∇J (mk)

• Set mk+1 = P(mk + µksk)

The line search parameter µ is chosen such that the objective function decreases.
The main difference between the steepest descent without constraints to steepest
descent with is that the termination criteria is slightly different, noting that we
cannot expect to obtain that the gradient will shrink to 0.

It is well documented that projected steepest descent tend to converge rather
slowly, exactly like steepest descent. Nonetheless, the method has one remarkable
property. Let us define two set of points mI , where if mlow ≤ m ≤ mhigh and
mA where m = mhigh or m = mlow. Projected steepest descent tends to identify
the set of the active constraints much before its final convergence. This leads to a
natural idea to combine the method with a Newton-like method. That can be done
by separating the iteration into two parts. In the first part, we use steepest descent
and in the second we use the Gauss-Newton method on the set of points that is
inactive. The algorithm can be summarized as follows

• Compute J (mk) and ∇J (mk)

• Set sk = −∇J (mk)

• Set mk+1 = P(mk + µksk)

• Identify the set I where if mlow ≤ mk ≤ mhigh

5.7. Constraint optimization formulation 61

• Solve the system P
�
I (J(m)�J(m) + α∇2

mR)PIm = P
�
I ∇mJ

where PI is a selection matrix such that mI = PIm The additional Newton like
step speeds up convergence when the correct set of constraint is found.

The Gauss-Newton system that is solved at each iteration is slightly changed.
Let PI be a projection matrix that chooses the inactive set at each iteration. Then,
the projected Gauss-Newton step is computed by (approximately) solving the sys-
tem

P
�(J(m)�J(m) + α∇

2
mR)P s = −∇mJ (m).

Again, the solution of the system can be done using some iterative method.

5.7 Constraint optimization formulation
In the above discussion we have assumed that the forward problem is solved for each
model exactly, that is u = u(m). In this section we discuss a different formulation to
the problem where the forward problem is not eliminated to obtain an unconstrained
optimization problem.

The motivation to work on the constrained approach is simple. Why solve for
u(m) accurately when we are far from the solution? In more technical terminology,
we look at the optimality, that is, how small is the objective function and feasibility,
that is, how accurate we solve the forward problem. The goal is to solve the forward
problem and the optimization problem in tandem that is, converge for the solution
of the forward problem as we converge for the solution of the inverse problem.

We thus look at the constrained optimization formulation

min J (m, u) (5.4a)
subject to c(m, u) = 0 (5.4b)

To solve such problems one requires to compute the stationary point of the
Lagrangian

L(m, u,λ) = J (m, u) + λ
�

c(m, u)

We now discuss a Newton-like method to achieve this goal.
Differentiating the Lagrangian we obtain the necessary conditions for a mini-

mum sometimes refer to as the Kush-Kun-Tucker (KKT) conditions

∇L =

∇uJ (m, u) + (∇uc)�λ = 0
∇mJ (m, u) + (∇mc)�λ = 0

c(m, u) = 0
(5.5)

This is a nonlinear system for m, u and λ that can be solved using Newton’s method.
In each Newton iteration one computes the Hessian H = ∇2L and solves the Newton
system

Hs = −∇L

where s = [s�u , s
�
m, s

�
λ]�. When the system is solved we update.

u ← u + µsu m ← m + µsm λ ← λ + µsλ

62 Chapter 5. Optimization Techniques

Figure 5.1. Constrained optimization - the goal is to minimize the function
and to stay on the constraint (blue line).

where µ is a parameter that is guarantied to decrees a merit function.
The difficulty in constrained optimization is that the objective function cannot

be used as a merit function since it may not decrease if we wish to be feasible. This
is demonstrated in Figure 5.1. Assume that at some iteration we are at the green
point. The red point is a local minimizer. It is obvious that one can decrease the
value of the objective function without getting closer to the minimum. At the same
time, one can get closer to the constraint and get further from the solution. A good
step is obtain by a combination of both. It is possible to show that a good descent
direction decreases the merit function

Jmerit = f(m, u) + γ|c(m, u)|1

where the parameter γ needs to be chosen judicially, for more details see [15]. In my
experience in many cases, using the merit function �∇L�2 can work well in practice

Example: DC resistivity
To be a bit more specific we return to the DC resistivity example. Here we have that

c(m, u) = D
� diag(Avm) Du− q

5.8. Solving the linear systems 63

and
J (m, u) =

1
2
�Qu− d�

2 +
α

2
�Lm�

2

Differentiating we obtain

∇uJ = Q
�(Qu− d) ∇mJ = α L

�
Lm

∇mc = D
� diag(Du) Av ∇uc = D

� diag(Avm) D

The Hessian is

H =

Q
�

Q D
�diag(Avλ)D D

� diag(Avm) D

D
�diag(Avλ)D αL

�
L + D

�diag(Avλ)D A
�
v diag(Du)D

D
� diag(Avm) D D

�diag(Du)Av 0

5.8 Solving the linear systems
When solving the constrained formulation, every Newton iteration we require to
solve a large sparse system of equations. We now briefly review the solution of the
system. The system has the form

H =

Luu Lum c

�
u

L�um Lmm c
�
m

cu cm 0

The system is indefinite (has positive and negative eigenvalues) and is referred to
as a saddle point system, or a KKT system. The interesting aspect of this system is
that it represents a system of tightly coupled PDE’s. A few approaches have been
proposed for the solution of the system. Here we follow two possible approaches.

First, we consider an optimization based approach that is often referred as the
reduced Hessian method. The idea here is to eliminate the constraint and obtain a
locally unconstrained approach. The (linearized) constrained reads

cuδu + cmδm = −c(m, u)

Recall that cu is the Jacobian of the forward problem and therefore can be inverted
(at least in principle). We can therefore, eliminate δu from the equations

δu = c
−1
u (−c(m, u)− cmδm

We then substitute δu in the first equation obtaining

Luu(c−1
u (−c(m, u)− cmδm) + Lumδm + c

�
u δλ = −Lu

Using this equation we can solve for δλ and obtain an equation for m alone.

Hδm = (c�mc
−�
u Luuc

−1
u cm + Lmm − Lumc

−1
u cm − c

�
mc
−�
u L

�
um)δm = rhs

It is possible to verify that to compute the product of this matrix and a vector only
to linear systems need to be solved. Now, consider the case that we drop the term

64 Chapter 5. Optimization Techniques

Lum from the Hessian. Note that this leads to the Gauss-Newton matrix that was
introduced for the unconstrained problem. Indeed, it is possible to verify that the
reduced Hessain above is the true Hessain of the unconstrained problem.

As previously discussed, the term Lumc
−1
u cm−c

�
mc
−�
u L�um may not be positive

and therefore is dropped in many practical setting. The linear system is typically
solved using a conjugate-gradient like method and δu and δλ are obtained from δm.

A second approach altogether for the solution of the system is to use the
underline properties of the system. Recall that this system represents a tightly
coupled system of PDE’s and therefore is amendable to PDE solvers. In particular,
multigrid methods have been proposed for the solution of the problem [2]. While the
discussion about multigrid is beyond the scope of this course we refer the interested
reader to a resent review paper on the topic [?].

5.9 Discussion - Constrained vs Unconstrained
formulation

At this point we would like to comment about the two different approaches for
the solution of the problem. Research on the constrained formulation has been in
focus in the last 10 years. Using the constrained approach is algorithmically much
more difficult compared with the unconstrained approach. However, there is no
doubt that by using specialized solvers and sophisticated optimization techniques
it is possible to obtain faster constrained algorithms than the constrained ones.
The advantage of the constrained methods is that one does not waste expensive
iterations, solving the forward problem exactly when we are far from the solution.
Nonetheless, this advantage is also the Achilles heal of constrained methods. In
the unconstrained methods, every iteration is feasible and therefore, they tend to
be more robust to the solution of the problem given say, an inappropriate regular-
ization parameters or when the iteration is terminated early. Another important
issue is that for problems with many sources, when working with the constrained ap-
proach, one requires to store u,m and λ at each iteration which can be prohibitively
expensive.

My recommendation is to use unconstrained approach in general and to invest
time and effort in the constrained approach when a problem is repeatedly solved
and a more special software is required.

