
Chapter 6

Problems with many right
hand sides

In tis chapter we discuss a particular set of difficulties that arise when the constraint
has the form

c(m, U) = A(m)U −B = 0

where U = [u1, . . . , uNs ] are the solutions for a discretization of a linear PDE with
multiple right hand sides.

Multiple right hand sides represent an abandon of sources. Using many sources
is a common way to obtain more data and hence, enhance the resolving power of
many imaging techniques.

Assuming the constraints are eliminated we can rewrite the optimization prob-
lem as

min
m

J (m) =
1
2
�QA(m)−1

B −D�
2
F + αR(m) (6.1)

Here D = [d1, . . . , dNs ] is the data obtained from different sources and B = [b1, . . . , bNs ]
is a discretization of the sources. We have assumed here that all sources share the
same receivers, that is, the observation matrix Q is identical for all sources.

6.1 Difficulties for problems with many right hand
sides

Using the standard solution techniques we can compute the gradient that reads

∇J (m) =
�

j

Ji(m)�(QA(m)−1
bi − di) + α∇mR(m) (6.2)

where Ji = ∇m(QA(m)−1
bi) is the sensitivity matrix for each source and can be

written as
Ji(m) = −QA(m)−1

G(m, ui)

with
G(m, ui) = ∇m(A(m)ui).

67



68 Chapter 6. Problems with many right hand sides

The Gauss-Newton step reads
�

�

i

Ji(m)�Ji(m) + α∇
2
mR

�
s = −∇J (m) (6.3)

Inspecting the above equations one can detect the main difficulties. First,
for every step we need to solve Ns forward problems and Ns adjoint problems.
Second, if we desire to use the Gauss-Newton then we require to store the fields
ui, i = 1, . . . , Ns. This can be cumbersome even for small model problems! We now
discuss a number of approaches to deal with such problems.

6.2 Brute-Force solutions
Maybe the most simple algorithmically (but certainly the least efficient computa-
tionally) is the brute force approach. Here we simply compute the function, the
gradient, and, if computer memory is not an issue, we also store the fields and use
the Gauss-Newton iteration.

This approach can be truly expensive. For each step of the Gauss-Newton
method we require to solve 2Ns(nCG + 1) where nCG linear systems, where nCG

is the number of conjugate gradient iterations needed to solve the Gauss-Newton
system. Assume for example, a moderate number of sources, say, 1000 and a small
number of CG steps, say 10, then, each Gauss-Newton iteration requires the solu-
tion of 22, 000 linear systems! This can be a daunting calculation. At this point
using a direct solver and storing the matrix decomposition is highly recommended.
This implies that for large scale problems one cannot hope to solve the inverse prob-
lem using a straight forward method unless an adequate computational platform is
available.

It is possible to work with much more modest computational hardware if first
order methods are used. In this case, the gradient can be computed without storing
all the fields using the following approach to compute the forward problem and the
gradients

• Set misfit = 0 ∇misfit = 0

• For j = 1, . . . , Ns

– Solve A(m)uj = bj (the forward problem)
– rj = Quj − dj

– misfit ← misfit + r
�
j rj

– Solve A
�

λj = Q
�

rj (the adjoint problem)
– ∇misfit ← ∇misfit−G

�
j λj

Note that we write over each field and Lagrange multiplier and therefore do not
require the storage of all the fields. This enables the use of steepest descent and
the LBFGS methods even for a low memory architecture.



6.3. Subset iteration methods 69

6.3 Subset iteration methods
The previous approach required the solution of at least 2Ns linear systems at every
iterations in order to obtain the gradient and more iterations to obtain the Gauss-
Newton step. An approach to reduce the computation is the subset method. The
idea is rather simple. Rather than working with the whole data set divide the data
into � groups, where each group contains Ns/� sources. At each iteration, we work
with the �’s subset to perform a single Gauss-Newton iteration. We then replace the
the subset and continue to cycle. This is a nonlinear Kaczmaraz iteration [18] that
is commonly used is ray tomography The idea was used by [10] for electromagnetic
inversion. While it can be proved that the approach works for linear problems
convergence for nonlinear problems, and particularly to non-convex problems is not
guarantied. However, even without convergence proof, the method seem to perform
well for a large range of problems.

Clearly, the method depends on the particular choice of sources and the divi-
sion to subsets. While theoretically all possible divisions have similar convergence
properties, it is observed that on practice, convergence is highly influenced by the
subset selection. While exact analysis does not exist, choosing subsets such that
each subset is mostly independent seem to do better than subsets that are depen-
dent. One way to achieve such subspaces is to choose indices in random and combine
random sources into groups.

6.4 Stochastic programming approach
In the above approach we used a subspace method for the solution of the problem.
In this section we generalize the approach and show that it is possible to obtain a
solution technique that requires considering only a single! PDE at each iteration.

To do that we first define the residual

S(m) = QA(m)−1
B −D

and use a statistical identity and rewrite the misfit as

misfit =
1
2
�QA(m)−1

B −D�
2
F =

1
2
trace(S(m)�S(m)) (6.4)

=
1
2
Ew w

�
S(m)�S(m)w

where E is an expected value on a random vector w that has the following properties

• E(w) = 0, that is w has a 0 mean

• Cov(w) = I

We can thus replace the original optimization problem with the stochastic
programming problem

min
m

J (m) =
1
2
Ew w

�(QA(m)−1
B −D)�(QA(m)−1

B −D)w + αR(m) (6.5)



70 Chapter 6. Problems with many right hand sides

Stochastic programming problems are problems with the form

min
m

Ewf(m, w).

Such problems are often solved in operation research as well as machine learning
and has received both theoretical and algorithmic treatment, se for example, [28, 5,
22, 17]. Some of the solution techniques have one remarkable feature, that is, they
can work with a very small sample size, w and this has a dramatic effect on our
problem. We now review two such methods.

6.4.1 Stochastic Average Approximation

Stochastic Average Approximation (SAA) uses Monte-Carlo in order to discretize
the expectation. The idea is to choose � samples w1, . . . , w� and solve the average
approximation problem

min
m

�J (m) =
1
2�

��

j=1

w
�
j (QA(m)−1

B −D)�(QA(m)−1
B −D)wj + αR(m)

If we choose wj as the unit basis function then we arrive to the original problem.
However, other, better, choices can be made. In particular, it is possible to choose
that a random w chosen with random entries of ±1 is the optimal choice [15]. Now,
consider the case of computing the misfit for a single sample. We have that

(QA(m)−1
B −D)wj = QA(m)−1

Bwj −Dwj = QA(m)−1(Bwj)− (Dwj)

Define, bwj = Bwj , we see that we can compute the above quantity using a single!
matrix inversion. Now, if the number of samples is close to the original number of
sources then no gain is made by the method. However, if the number of samples is
small then the number of systems needed at each iteration is reduced dramatically.
We have found that in practice a moderate number of w’s is needed. We have
successfully used 5-20 samples for problems with more than 1000 sources. The open
question that require special attention is, how to choose the number of samples.

It is important to note that SAA is not an algorithm. After discretization, any
optimization method can be used in order to solve the deterministic optimization
problem. This opens the door to methods such as Gauss-Newton and full space
approaches even for problems with multiple sources.

6.4.2 Stochastic Approximation

A second method to solve the problem is by using stochastic approximation (SA).
In this method we start at some point m1 and at each iteration use the steepest
descent method but with a different sample. The iteration contains two steps:

• �mk+1 = mk − µ∇J (mk, wk)

• mk+1 = 1
k+1

��k
1=1 mk + �mk+1

�



6.4. Stochastic programming approach 71

Here the parameter µ is fixed and should be chosen judicially (and this may not be
easy to do in practice).

The amazing property of this algorithm, applied to our problem is that it
requires a single right hand side at each iteration! This is rather remarkable and
surprisingly works well in practice [21].

Although no proof of convergence exists, we have used a similar algorithm but
with a Gauss-Newton step rather than a steepest descent step. While convergence
with high accuracy is difficult if not impossible, it seems that convergence to low
accuracy solutions can be quickly obtained.


