
Chapter 7

Statistical estimation

7.1 Frequency approach
One approach to statistical estimation is a frequentist approach. In this approach we
assign a probability to events based on their frequency of occurrence. For example,
we would say that the probability of an even coin landing on its head is 50%. This
means that if we repeat the experiment many times, roughly half of the times the
coin will land head’s up.

A different approach to probability, which we discuss later is probability based
on information. For example, we say that the chance of rain tonight is 20%. Ob-
viously, we cannot repeat the “experiment” many times. Yet, we seem to “un-
derstand” the meaning of this expression. We discuss this approach in the next
section. Here we concentrate on the frequentist approach that assign probability
only to measurable events.

7.1.1 Bias and Variance

A classical tool for inverse problem is the bias variance decomposition. First, let us
define the bias and the variance

Bias

We say that an estimator, �m of an unknown parameter m is unbiased if

E�m = m

for any possible value of m. In other words, on the average the estimator �m provides
the correct value. If �m is not unbiased (it is biased) we want to know how far of we
expect to be on the average. The bias of �m is dened as

Bias = E �m−m

Variance
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We define the variance of an estimator, �m as

Var = E(E�m− �m)2

Obviously, unbiased estimators are desired however, in most inverse problems
such estimators perform poorly. This is because such estimators may have a huge
variance. To demonstrate, consider the following example
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With � Gaussian and iid with variance σ
2. The least squares solution is

�m1 = d1 �m2 = ζ
−1

d2

Obviously, this estimator is unbiased since

E�m1 = Ed1 = m1

and
E�m2 = Eζ

−1
d2 = m2

Now, assume that ζ is small. In this case the variance of �m1 is σ
2 however, the

variance of �m2 is σ
2
ζ
−1. This can be a huge variance and thus lead to an unstable

result. Consider on the other hand the estimator

�m1 = d1 �m2 = 0

Obviously, this estimator is biased, nevertheless, the variance of this estimator is
very small. Finally, consider the estimator

�m1 = d1 �m2 = (ζ + α)−2
ζd2

It is easy to verify that for small m2 the bias is very small while for large m2 the
bias is larger. However, this estimator has a small variance which makes it useful
in practical setting.

7.1.2 The Bias-Variance decomposition

An important question is what is the error in recovering the model by an estimator
�m, that is we seek to estimate the Mean Square Error (MSE) defined as

MSE = E ��m−m�
2

A nice trick can be used.

MSE = E ��m−m�
2 = E��m− E�m + E�m−m�

2

= E��m− E�m�2 + E�E�m−m�
2 + 2E

�
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Now note that E
�
(E�m−m)�(�m− E�m)

�
= 0 and therefore

MSE = E ��m−m�
2 = E��m− E�m�2 + E�E�m−m�

2 = Var + �Bias�2

This decomposition is a classical one known as the Bias-Variance decomposi-
tion. It show that controlling the total error requires the solution of both the bias
and the variance. For many problems there is a tradeoff. One could reduce the bias
and increase the variance and vise-versa.

Consider Tikhonov regularization with a fixed regularization parameter α. The
estimator �m can be written as

�m = (A�A + αL
�

L)−1
A
�

d.

Define C = (A�A + αL
�

L) we compute the MSE and obtain

MSE = E ��m−m�
2 = α

2
�C

−1
L
�

Lm�
2 + σ

2 trace(AC
−2

A
�)

For non-fixed regularization parameter (e.g. when GCV or discrepancy prin-
ciple are used) there is no such “clean” decomposition because the regularization
parameter α depends on the true model. Nevertheless, one can hope that for a wide
range of models, similar regularization parameters “work”. In this case one can get
an idea of the uncertainty of the estimator using the above formula. If a more
accurate estimate of the MSE is needed then one needs to differ to Monte-Carlo
simulations. This is done as follows

• e = 0, j = 1

• while 1

– Generate data dj = Am + �j

– solve for �mj

– MSEj = 1
j

�
��m−m�2

– termination criteria

The above algorithm can be used to estimate the MSE for a known model. As
many Monte-Carlo methods it can be slowly to converge however, unfortunately,
there are no other alternatives when the estimator �m is nonlinear with respect to
the data

7.1.3 Uncertainty

The above analysis separate the error of an estimator �m into bias and variance.
The variance depends on the noise alone while the bias depends on the true model.
If the only information given is the data then it may be possible to assess the
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variance but it is impossible to assess the bias based on the data alone. This is why
uncertainty estimation is very difficult for ill-posed problems while it is relatively
straight forward to do so for well posed problems.

There are two main approaches to estimate the bias. The first approach is to
look at some average case. Recall that the bias is defined as

Bias = E�m−m.

If we have a distribution of all possible models then we can (only in principle)
compute the average bias

Bias =
�

M
(E�m−m) dm

where M is the space of possible models. Such space can be

• A convex set, for example �m�W ≤ 1

• A distribution, (e.g. Gaussian)

• The convex hull of many examples M = span(m1, . . . ,mq).

Estimating the bias can be done prior to obtaining any data! One way to
do it is to compute the integral using Monte-Carlo methods. For some simple
(yet important) cases one can avoid Monte-Carlo methods. Consider the case of
Tikhonov regularization with a fixed regularization parameter. We saw that the
bias can be written as

�Bias�2 = α
2
�C
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�
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Assume now that m has a PDF with mean m0 and covariance matrix Cm. Then,
it is easy to verify that

�Bias�2 = α
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The interesting point is that even if m has a very complicated distribution then
we require only the covariance. Thus, we may be able to estimate the covariance of
m which is much easier than the whole distribution.

The estimation of the variance is straight forward. In this case we require to
estimate

Var = σ
2 trace(AC

−2
A
�)

For large scale problems, estimating both bias and variance can be rather
difficult. Stochastic trace estimators are useful tools for these problems. A common
approximation for the trace is

trace(H) ≈
�

i

v
�
i Hvi
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It turns out that even with a choice of a single vector the approximation can be
reasonable.

It is possible to use the same ideas as above in order to estimate the model in
an area. For example, consider any window w and the product w

�
m. The difference

MSEw = �w
�(�m−m)�2

can be thought of as a semi-norm. In this case, the weighted bias and variance are
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7.2 Bayesian approach
In the frequentist approach we treat the problem of recovering the model as a
deterministic quantity. The way to obtain a stable estimate was to use regularization
and the way to pick a regularization operator was to reduce the bias associated with
the models we expect to have. A different approach all-together is to use Bayesian
techniques for the estimation of the model. The advantage of Bayesian methods is
that they use rigorous probabilistic tools to estimate the model and its uncertainty.
If one “buys into” this framework then it is easy to come with answers (at least in
principle) for most of the estimation problems that are associated with the inverse
problem. Here we try to review the Bayesian framework and discuss its advantages
and its faults.

7.2.1 Bays formula and its implication

In the Bayesian framework we generate a probabilistic model of m. This is some-
times presented in a somewhat confusing manor and (in my opinion) without real
reason.

The idea is that we treat m as a random variable. This does not mean that
the “true” model is random. It does mean that the information about the model is
modeled as a probability and before we know what the true model is, we assign a
probability density function to its distribution. Let π(m) be the probability density
function that is associated with the mode prior to conducting any experiment and
collecting any data. Since this probability is not related to the data it is referred
to as, the prior.

Now assume that we are given a model m. The question is, what is the
probability of having a data vector d. This is a conditional probability, which we
mark as p(d|m). In the case of Gaussian, iid noise we can write the prior as

p(d|m) ∼ exp
�
−
�d−Am�2

σ2

�

The probability p(d|m) is referred to as, the likelihood.
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Figure 7.1. The prior (left) the likelihood (middle) and the posterior (right)

Next, we collect data d and ask, what is the probability of the model m given
the data vector d. Bayes formula is

p(m|d) =
π(m) p(d|m)

p(d)
(7.1)

The probability p(m|d) is referred to as the posterior. This simple formula entails
in it all the information about the model. In fact, one may claim that this is the
“answer” to our inference problem of recovering the model given the data.

Let us demonstrate the idea using a very simple example. Assume that m =
[m1, m2] and that we have a single datum of the form

d = m1 + m2 + �

If � is normal iid with standard deviation σ
2 then d is Gaussian with mean m1 +m2

and standard deviation σ
2, that is

p(d|m) ∼ exp
�
−

(d−m1 + m2)2

σ2

�
.

Now assume that the prior is also Gaussian and that

π(m) ∼ exp
�
−

m
2
1 + m

2
2

σ2
m

�
.

Finally, the posterior is

p(m|d) ∼ exp
�
−

(d−m1 + m2)2

σ2
−

m
2
1 + m

2
2

σ2
m

�
.

We plot the probability of the prior, the likelihood and the posterior in Figure 7.1.
The question, what is the model that yields a particular set of data is now

meaningless. There is only a distribution of models, some are more likely than
others to recover the data. For example, we can ask, which model maximizes the
posterior. This model is the maximum a posteriori (MAP) model. Since p(m|d) is
a distribution, the chances of having this particular model are zero and therefore,
the model cannot be treated as “the answer to the estimation problem”.

Now consider a slightly more general case where

π(m) ∼ exp(−m
�

C
−1
m m)

p(d|m) ∼ exp(−(d−Am)�C
−1
d (d−Am))

with Cm and Cd are covariance matrices for the prior and the likelihood. Then, the
posterior is

p(m|d) = exp(−m
�

C
−1
m m− (d−Am)�C

−1
d (d−Am))
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The MAP model maximizes the posterior or minimizes the exponent, that is

mMAP = argminm
�

C
−1
m m + (d−Am)�C

−1
d (d−Am))

Assume now that C
−1
m = L

�
L and that C

−1
d = α

−1
I then

mMAP = argminα�Lm�
2 + �d−Am�

2

which is equivalent to the Tikhonov estimate.
The equivalence between a particular MAP estimate and the Tikhonov esti-

mate can be misleading. One may believe that the Bayesian estimators are equiva-
lent to their deterministic counterparts. This is one of the most common mistakes.
In fact, the frequentist approach is very different compared with the Bayesian ap-
proach for most other aspect of the model. Maybe, the most important aspect of
the Bayesian approach is the fact that the bias does not exist. Since there is no
“true” model there is no meaning to discuss Em −m. In fact, for any symmetric
posterior we have that Em is the MAP estimate. Thus, the MAP estimate can be
interpreted as an average of all the models that yield the data (in a distribution
form).

We can however ask, what is the difference between the MAP estimate mMAP

and the particular realization m
r given a realization of the noise �

r. The usual
formula shows that

mMAP −m
r = −α

2(A�A + αL
�

L)−1
L
�

Lm
r + (A�A + αL

�
L)−1

A
�

�
r

Taking the expected value over the noise we have

E� (mMAP −m
r) = −α

2(A�A + αL
�

L)−1
L
�

Lm
r

Thus the bias in the frequentist approach is interpreted as the difference between a
particular realization to the mean. If we average over all models we simply get that

EmE� (mMAP −m) = 0.

(assuming a symmetric probability density function).
Given the posterior, one can now discuss any statistical quantity of the model

including confidence intervals. An α confidence interval, I is an interval for which

P (m ∈ I) = 1− α.

It is easy to obtain a formula for this interval and assuming that the bias is correct,
one can actually expect to obtain a correct estimate for the uncertainty involved
with the MAP estimate.

Another interesting feature of classical Bayesian estimation is that there is no
need to compute a regularization parameter. Given the covariance matrices of the
prior and the likelihood determine the relative weight between the “regularization”
term and the data fitting term. Although this may look like an advantage it is a
serious disadvantage as it is well known that it is better to choose the regularization
parameter taking the actual noise into consideration. Although there are Bayesian
approaches that allow for the use of GCV or any other criteria, such an approach
is less natural within a Bayesian framework.


